Correct operation steps of plate heat exchanger



Many people don't know what to pay attention to when operating a plate heat exchanger. Let me introduce you to them.

1. Driving operation and precautions

1. When using on a new process pipeline, pay attention to clear the debris in the pipeline to avoid clogging the heat exchanger.

2. If sewage is used as the cooling medium, or the waste heat of the sewage is recovered, or the medium contains granular solids, a filter or decontamination device should be installed at the entrance of the heat exchanger to avoid clogging the heat exchanger.

3. When the cooling water (heating) water temperature exceeds 40℃, it should be softened as much as possible to prevent the heat exchanger from scaling and affecting the heat transfer effect.

4. Check whether the pipeline connection is correct, to avoid mixing of the two media, causing undesirable consequences.

5. Strictly check whether the inlet valve of the cold and heat medium is closed and the outlet valve is open before driving.

6. After finishing the above work, it can be turned on. When driving, start the cold and heat medium pumps, slowly open the cold medium water inlet valve, and then open the heat medium water inlet valve to make the medium flow into the heat exchanger slowly to avoid overheating.

7. Check all sealing surfaces and all welds for any abnormal phenomena such as leakage.

8. Slowly increase the temperature, and measure and calculate whether it meets the process requirements at the same time. After it is satisfied, normal operation can be entered.

2. Normal operation and inspection

1. Frequently check all the sealing surfaces and welds of the heat exchanger to observe whether there are any abnormal phenomena such as leakage. If a leak is found, mark the leak point in time and take care of it after shutdown.

2. Check the pressure gauge and thermometer regularly to observe if there is any abnormality.

3. When shutting down, first slowly close the inlet valves of the cold and hot media, and then close the outlet valves of the two media. When the machine is turned on, the situation is just the opposite. First open the water outlet valve, and then slowly open the water inlet valve.

4. The medium on the low pressure side should be tested regularly to avoid mixing of the medium on the high pressure side. If it is mixed in, it means that internal leakage has occurred and the treatment should be stopped.

3. Shutdown operation and precautions

1. Before stopping the machine, the pump must be stopped and the power supply must be cut off.

2. After stopping the pump, first slowly close the heating medium inlet valve, and then close the cold medium inlet valve. Finally, close the outlet valves of the two media.

3. If a vent valve is installed in the pipeline, it should be opened.

4. For media with higher temperature and corrosive media, the equipment should be emptied as much as possible when the equipment is opened to avoid burning and corrosion of the equipment.

Get In Touch


Recommend Read

  • Method for cleaning vicarb heat exchanger plate


    Vicarb heat exchanger plates have been widely used in some areas such as central heating and chemical industry. The plate heat exchanger has a good heat exchange effect, but it is prone to produce scale and impurities, which will block the flow of the plate heat exchanger and reduce the heat exchange effect. So, how to clean the plate heat exchanger?Plate heat exchangers can be disassembled and recirculated.

    Disassembly and cleaning steps:
    Disassembly and cleaning can clean both processes of the heat exchanger. The main steps are:
    1. Close the two water inlet and outlet valves of the heat exchanger;

    2. Measure the distance between the baffles of the heat exchanger and make a record;

    3. Disassemble the plate heat exchanger, empty the medium in the equipment, disassemble in the prescribed order, and make a record. Be careful not to damage the gasket and the plate during the disassembly process;

    4. During the cleaning process, the plates should be cleaned piece by piece, and soaked and washed. In the case of high-pressure cleaning, the cleaning should be performed below the specified pressure;

    5. After processing, put it back in the plate heat exchanger baffle in the original order, paying attention to distinguish the front and back. Control the strength when tightening the clamping bolts firmly, otherwise it is easy to crush the plate;

    6. Open the outlet valve and inlet valve of the plate heat exchanger to see if there is any leakage. If there is no leakage, the cleaning is complete.

    Cycle cleaning steps:
    If it is used in the chemical industry, firstly close the inlet and outlet valves of the plate heat exchanger, and add the cleaning agent to the system through a tube pump or a water tank for internal circulation until the concentration of the cleaning agent no longer changes and the impurities in the equipment are discharged.

    If it is a passivation treatment, it is necessary to ensure that after the chemical descaling is completed, no rust or other phenomena will occur in the pipeline. The amount of passivation cleaning solution needs to be determined according to the amount of water during cleaning, and the ph value cannot be too high, otherwise the effect will be poor, and it will be discharged after six hours.

    Finally, the plate heat exchanger was restored, and the inlet and outlet water valves were opened, indicating that the cleaning was completed.
  • The role and advantages,disadvantages of plate heat exchangers


    Plate heat exchangers are a type of mobile device that transfers heat between metal plates because the liquid is spread over more surfaces, which increases the exchange rate. Metal tubes are used to heat fluids.

    The role of plate heat exchangers
    The plate heat exchanger is based on different external and internal components, the welding plate exchange plates are welded together, and the brazed plate type construction model is vacuum brazed. In many cases, in order to make smaller sections work better, some chambers are designed to be thinner, allowing most of the liquid to contact the plate, improving heat transfer.

    The plate heat exchanger can play a good heat transfer effect in the boiler heating in winter. In the daily use process, it is necessary to do a good job of protecting this equipment. The plate heat exchanger is a kind of equipment that can play multiple benefits and functions for us. The user clearly knows its role and protects it so that it can play a greater role.

    Advantages of plate heat exchangers
    High heat transfer coefficient. The plate heat exchanger has a small flow channel, the plates are wavy, and the cross-section changes are complex, which makes the flow direction and velocity of the fluid constantly change, which increases the disturbance of the fluid and has a high heat transfer coefficient.

    Great adaptability. The required heat transfer area can be achieved by increasing or decreasing the plate. A heat exchanger can be divided into several units, which can be used for heating or cooling between several fluids at the same time.

    Compact structure, small size and few consumables. The heat transfer area per cubic meter volume can reach 250m2, and the heat transfer surface per square meter only needs about 15kg of metal.

    Dirt factor is small. Due to the large flow disturbance, dirt is not easily deposited. The plate heat exchanger plate is of good material and has little corrosion, which makes its fouling coefficient value smaller. Plate heat exchangers mainly use metal plates, so the price of raw materials is cheaper than the same metal pipes.

    Disadvantages of plate heat exchangers
    1) Poor sealing and easy to leak. The gasket needs to be replaced frequently, which is troublesome.
    2) The use pressure is limited, and generally does not exceed 1MPa.
    3) The use temperature is limited by the temperature resistance of the gasket material.
  • Gasketed Plate Heat Exchanger VHX151


    VHX supply gasketed plate heat exchangers from 0.03m2 to 1.8m2 for different application requirements. We manufacture plate heat exhcanger for replacement models and our own brand models, available calibre from DN25 to DN350.

    gasketed plate heat exchanger

     
    Model Height Width Min Standard Length Max Standard Length Vertical Port Distance Horizontal Port Distance Connection
    VHX25 480 180 20 350 357 60 DN25
    VHX51 940 330 35 600 640 140 DN50
    VHX52 920 320 25 450 640 140 DN50
    VHX61 835 325 50 630 625 130 DN65
    VHX62 1085 325 50 630 875 130 DN65
    VHX101 1084 470 120 950 719 225 DN100
    VHX102 1084 470 80 640 719 225 DN100
    VHX103 1235 500 115 1125 882 234 DN100
    VHX104 1655 500 115 1125 1302 234 DN100
    VHX151 1885 650 235 1410 1294 298 DN150
    VHX152 1885 610 160 1255 1294 298 DN150
    VHX201 2055 730 235 1645 1478 342 DN200
    VHX301 2086 1125 215 2580 1320 600 DN300
    VHX351 2920 1190 210 3360 1842 596 DN350
    Available plate material: AISI304/AISI316/Titanium/Nickel/Alloy C-276/254 SMO
    Available gasket material: NBR/EPDM/HNBR/NBR-HT/EPDM-HT/Viton-A/FKM/Viton-G/FKM/CR
    Available connection material: rubber/stainless steel/unlined/flange


     
  • Plate heat exchanger VHX102


    VHX supply plate heat exchangers from 0.03m2 to 1.8m2 for different application requirements. We manufacture plate heat exhcanger for replacement models and our own brand models, available calibre from DN25 to DN350.
     Thermowave Plate Heat Exchanger Gasket
    Model Height Width Min Standard Length Max Standard Length Vertical Port Distance Horizontal Port Distance Connection
    VHX25 480 180 20 350 357 60 DN25
    VHX51 940 330 35 600 640 140 DN50
    VHX52 920 320 25 450 640 140 DN50
    VHX61 835 325 50 630 625 130 DN65
    VHX62 1085 325 50 630 875 130 DN65
    VHX101 1084 470 120 950 719 225 DN100
    VHX102 1084 470 80 640 719 225 DN100
    VHX103 1235 500 115 1125 882 234 DN100
    VHX104 1655 500 115 1125 1302 234 DN100
    VHX151 1885 650 235 1410 1294 298 DN150
    VHX152 1885 610 160 1255 1294 298 DN150
    VHX201 2055 730 235 1645 1478 342 DN200
    VHX301 2086 1125 215 2580 1320 600 DN300
    VHX351 2920 1190 210 3360 1842 596 DN350
    Available plate material: AISI304/AISI316/Titanium/Nickel/Alloy C-276/254 SMO
    Available gasket material: NBR/EPDM/HNBR/NBR-HT/EPDM-HT/Viton-A/FKM/Viton-G/FKM/CR
    Available connection material: rubber/stainless steel/unlined/flange


    Thermowave Plate Heat Exchanger Gasket
  • Heat Exchanger Plate VHX25


    VHX supply heat exchanger plates from 0.03m2 to 1.8m2 for different application requirements. We manufacture plate heat exhcanger for replacement models and our own brand models, available calibre from DN25 to DN350.

     
    Model Height Width Min Standard Length Max Standard Length Vertical Port Distance Horizontal Port Distance Connection
    VHX25 480 180 20 350 357 60 DN25
    VHX51 940 330 35 600 640 140 DN50
    VHX52 920 320 25 450 640 140 DN50
    VHX61 835 325 50 630 625 130 DN65
    VHX62 1085 325 50 630 875 130 DN65
    VHX101 1084 470 120 950 719 225 DN100
    VHX102 1084 470 80 640 719 225 DN100
    VHX103 1235 500 115 1125 882 234 DN100
    VHX104 1655 500 115 1125 1302 234 DN100
    VHX151 1885 650 235 1410 1294 298 DN150
    VHX152 1885 610 160 1255 1294 298 DN150
    VHX201 2055 730 235 1645 1478 342 DN200
    VHX301 2086 1125 215 2580 1320 600 DN300
    VHX351 2920 1190 210 3360 1842 596 DN350
    Available plate material: AISI304/AISI316/Titanium/Nickel/Alloy C-276/254 SMO
    Available gasket material: NBR/EPDM/HNBR/NBR-HT/EPDM-HT/Viton-A/FKM/Viton-G/FKM/CR
    Available connection material: rubber/stainless steel/unlined/flange